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Mathematical aspects of the theory of
inviscid hypersonic flow

By K. LouiE AND J. R. OcKENDON
Mathematical Institute, 2429 St Giles, Oxford, OX1 3LB, U.K.

. \
A A

This paper reviews some differential equations arising in the theory of inviscid
hypersonic gasdynamics. The only real-gas effects that we have incorporated are
simple models for chemical reactions. After describing what is known about the
solution structure of these equations in unsteady one-dimensional and steady two-
dimensional flow, we make some conjectures about the well-posedness and
regularization of certain specific open problems which have not yet been susceptible
to mathematical analysis.
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1. Introduction

The purpose of this article is to recapitulate some of the simplest mathematical
models for inviscid hypersonic flow with the aims of identifying (i) mathematical
techniques which can provide insight into such flows, and (ii) unsolved mathematical
problems associated with these models.

Although inviscid models have limited practical value, it is important to
understand them as well as possible if theoretical progress is to be made with more
complicated models for real gases. Our models are limiting cases of viscous or
rarefied-gas models, some of which are discussed elsewhere in this issue. More
important for our purposes, and sometimes vitally important in practice, is the
occurrence of chemical reactions and we will see that even crude models for these
reactions can be as suggestive as localized viscous modelling as far as the
mathematical understanding of inviscid hypersonic flows is concerned.

We will begin our account by writing down the simplest models of ideal-gas flows,
identifying the relevant parameters and commenting on the few explicit solutions
which are available. Then in §2 we will describe some approximations which can be
made when the flow is hypersonic and we will use these to make some conjectures
about certain general properties of inviscid hypersonic flows.

The background for almost all the material presented here can be found in the
famous books of Hayes & Probstein (1966) and Chernyi (1961). Many of the ideas we
use were pioneered and developed in the golden age of theoretical hypersonic flow in
the 1950s and 1960s. Scientific computation is now the dominant force in the analysis
of hypersonic flow and the most useful attributes of modern mathematical treatments
are their ability to provide test cases for numerical schemes and to give warnings
where unexpected behaviour may call for extra care with discretizations.
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Non-reacting flow models
We start with the equations for unsteady, one-dimensional flow of an ideal gas in
the absence of viscosity, heat conduction, radiation and chemical reactions. In the
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122 K. Louie and J. R. Ockendon

usual dimensionless form, the eulerian equations for the density p, pressure p and
velocity u are

dp/dt+pou/ox =0, (1a)
pdu/dt+0p/ox =0, (16)
de/dt+pd/de(1/p) =0=d/dt(p/p”) =0, (Le)

where d/dt = 0/0t+u0/0x, e = p/{(y—1) p} and v is the specific heat ratio, assumed
constant. We will only consider flows in which there is a single shock wave adjoining
an undisturbed gas in x > x(t), which is denoted by subscript zero; at x = x, the
Rankine—Hugoniot conditions are

plpe = (y+1)/{(y—1)+2/M?}, (2a)
/Py = 2yM*—(y—1)}/(y+1), (2b)

w=2a,/(y+1)(1—1/M?), (2¢)

where p, is constant, but p, need not be, and M? = p, &2/yp,.

We will subsequently find it convenient to work with the lagrangian form of (1) in
which x, p and p are considered as functions of ¢ and the particle-path function £,
which is such that 05/0x = p, 0§/0t = — pu. Thus, assuming the gas lies in > 0 at

t=0,
z 3 (2
§=J podx——jpudt=J pde,
0 0 Zp(t)

where x,(¢) is the current position of the gas particle which was at the origin at
t =0 and can be interpreted as a piston path; £ is the mass of gas between this
particle and the point x. In these variables

o /OE = 1/p, (1a)
0%x /02 +dp/0€ = 0, (1)
0/t (p/pY) =0, (Le')
where, in addition to (2a, b),
r=u1a,) at &= f Spo de, (2¢)
0

assuming that the shock also starts at x = 0 at { = 0. We remark that since we can
take p, to be unity, the only parameters appearing in the models are y and the scales
in p, and x,, which will determine the size of M. We also note that (1) is a hyperbolic
system but (17) is not unless we work with u = 0x/0¢ instead of x.

Later, we will need to compare (1) and (2) with the equations of steady two-
dimensional flow, namely

Dp/Dt+pdivu =0, (3a)
pDu/Dit+gradp = 0, (3b)
D/Dt(p/p?) = 0, (3¢)

Phil. Trans. R. Soc. Lond. A (1991)
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The theory of wnviscid hypersonic flow 123

where u = (u,v), D/Dt =u0/0x+v03/0y, together with the Rankine-Hugoniot
relations

p/po= (v + 1 /{(y—1)+2/M?*sin® 3}, (4a)

p/po =2y Msin* f—(y—1)}/(y+1), (40)

(u=0)/U= —[2/(y+1)]sin®* {1 —1/M?sin? §], (4c)
v/U=[2/(y+1)]sin fcos f[1 —1/M?sin® ], (4d)

where M? = p,U?/vp, (4e)

at a shock making an angle g with a free stream of velocity (U,0). There is now not
so much advantage in working in a lagrangian frame except in a case in which the
gas flow is confined to a thin layer. In the next section we will encounter
circumstances under which this can happen and the relevant transformations of (3)
and (4) to ‘body-fitted’ coordinates are given in the Appendix, together with their
lagrangian counterparts.

As in the one-dimensional case, y, U and the scales of p,, and any obstacle in the
flow, are the only parameters and they determine M. We could write down an
equivalent of (3), (4) for axisymmetric flow with almost identical results.

Despite their apparent simplicity, there is little mathematical knowledge about
the solutions of (1) or (3) except for simple geometries. For realistic values of the
parameters, the most useful explicit solutions are those catalogued in gasdynamic
textbooks, namely Riemann problems for shock tubes, uniformly moving pistons
and flow past wedges, all of which have similarity solutions. An interesting
unification of some of these flows when there is only one space variable has been given
in Keller (1956). From this evidence it seems likely that, provided an entropy, or
some equivalent, condition is prescribed at x = x,, the systems (1), (2) and (3), (4) are
well-posed and our principal goal in the next section will be to say as much as we can
about useful approximate solutions in the hypersonic limit when M — co. Before we
do this, we will catalogue some of the models for chemical reactions which have been
incorporated into (1)—(4).

Reacting flows

Conceptually, the simplest models are those for which the reaction is limited to a
thin region in space and incorporated as a modification to the Rankine-Hugoniot
conditions to lowest order. The best-known example is the theory of detonations and
deflagrations (Courant & Friedrichs 1948) in which the energy conservation
statement which led to (2) is changed to

r=x4+0

LAY )] =0, 5
[pu((y_l)p+2u+ (p,p) 2=25—0 ()

where E is the energy released during the reaction. This extra term not only
introduces further non-uniqueness into the possible downstream conditions but,
when suitable assumptions are made about E, it splits these conditions into two
disjoint branches; detonations, across which p and p both increase and whose
positions, like those of shock waves, are determined by (5), and much slower
deflagrations in which p and p both decrease and whose positions are determined by
their local structure. In fact these two phenomena can be unified by regarding a

Phil. Trans. R. Soc. Lond. A (1991)
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124 K. Loure and J. R. Ockendon

detonation as a shock wave followed by a deflagration. The mathematical analysis
of deflagrations is especially delicate since they tend to expansion shock waves as
E —0 (Ludford & Stewart 1981).

In the case of distributed chemical reactions, we need rate equations to describe
how the relevant non-equilibrium variables behave behind as well as at the shock
wave. For air, there is a hierarchy of such equations for the increasingly complicated
molecular processes which occur as M and hence the temperature is increased. The
first and simplest is the case of vibrational excitation of the molecules which is
typically modelled by writing

€= [Cv/(cp_cv)] (p/p)-l_cl 711! (6)

where ¢, ¢; and ¢, are constants and the second term represents the energy in the

vibrational mode. The simplest rate equation for 7] is
r01}/0t = T—1}, (6)

which is to be appended to (1a’—’), where the relaxation time 7 is a function of p and
T but usually taken as constant (Blythe 1961). The extra derivative appearing in the
model necessitates an extra boundary condition behind the shock front, and, since
this is typically only a few mean free paths thick, we take this as that of ‘frozen’ flow

T,=0 at x=ux,?). (2d")

In this situation, there is a relatively wide region downstream of the shock in which
the vibrational modes are excited.

We note that the model (6, 6) can be related to (5) in two simple cases. First, when
7 = 0, the flow is in equilibrium everywhere downstream of the shock and is therefore
modelled by (1) or (1’) with y replaced by vy, = ¢,/(c, +¢;) and the shock relations (2)
or (2’) with y replaced by ;. A simple calculation shows that these shock relations
are the same as those with y replaced by y. aslong as £ = [¢;/(c,—c,)] p/p. Secondly,
when 7= 00, we can work with 7, in both the field equations and the shock
conditions.

At higher Mach numbers and temperatures, the molecules may dissociate into
individual atoms and the rate equation is now conventionally written down for the
fraction of dissociated molecules (Freeman 1958; Sundaram 1968). The relation
between these models and (6, 6") is discussed in Spence (1961). Finally, at yet higher
temperatures, ionization and radiation can become important (Vincenti & Kruger
1965), but we will not discuss these here.

Without incorporating extra information such as the Chapman—Jouguet relation
for (5), or letting 7 tend to zero or infinity in (6”), there are no explicit solutions for
the chemically reacting models described above. However, approximations can be
made in various limiting cases, especially for weak shock waves (Clarke 1960 ; Moore
& Gibson 1960) and we will see in the next section that similar progress can also be
made in the hypersonic limit.

2. Approximate solutions for hypersonic flow
Small disturbance theory

The most famous simplification in inviscid hypersonic flow theory relates (1,2) to
(3,4) when the latter are applied to flow past a body which is uniformly thin, i.e. of
the form y = 8f(x) where § < 1 and |f’| < O(1) throughout. For 1 > 1/M > 4, we may

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

Py
/,// \\
J

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The theory of inviscid hypersonic flow 125

still use supersonic small disturbance theory ; however, when Mé = O(1), so that the
leading Mach wave in supersonic small disturbance theory has an inclination
comparable to that of the body, we can no longer treat this Mach wave as a weak
shock and a new scaling becomes necessary. The motivation for these scalings is
given in (Ockendon & Taylor 1983), repeated here for convenience. We only consider
the case of a uniform free stream, denoted by a subscript zero.

Supersonic small disturbance theory Hypersonic small disturbance theory
u = U(1+07), w = U(1+8%u*),
v = 8Up, v = oUv¥,
P = pot+po U, D = po US%p*,
p = po(1+0p), p = pop*,
=z y=7, x=x* y=0y*
To lowest order
—+—|+L =0, 7 (p*v*)  op* /
(ax ag) oz (7a) o= (7a)
o op Qu* Qu* 1 Op*
==z, 7b U™ e _ 1P T
oz or o ax*+”* d*  p* o e
) op du* Qv 1 Op*
w__P 7 AP ’
ox oy (Te) 8x*+v*ay* T pr oy (7)
p_ 13 d 3\ (p*
== 7d B | i d’
or  M?®ox (7d) (ax*+v* ay*) (p*y) =0, (7d)
together with the boundary conditions
p=f& on =0, (T¢) vE=f/@) on y*=fY). (1¢)
In the hypersonic case we must also append the shock conditions in the form
p* = (y+Dily—=1)+2/M547, (8a)
p*=[2/(y+ D] YA = (y—1)/2yM*?), (80)
wh = —[2/(y+ )] YE(1 - 1/M?4), (8¢)
vk =[2/(y+ D] Y{(1—1/M?f7), (84)

on the shock y = 8Y,(xz), where § = dYy.

By proceeding to second order in the hypersonic theory, and expanding for large
values of u*, y* and p*, we can retrieve the supersonic theory but more important
is the fact that (76") uncouples from (7a’, 7¢’, 7d’) so that (7’) is formally equivalent
to the unsteady one-dimensional model (1),(2) in the hypersonic limit; the body
boundary condition (7¢’) corresponds to the motion of a piston following a path
x, = f(t). A similar result relates steady hypersonic slender body flow to unsteady
two-dimensional piston motion.

We emphasize that the body shape must be uniformly small for the above remarks
to be valid and that any blunting of the leading edge or tip becomes a more and more
important global feature of the flow as the Mach number is increased. This is reflected

Phil. Trans. R. Soc. Lond. A (1991)
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126 K. Louie and J. R. Ockendon

in the fact that the shock conditions are all-important even in slightly perturbed
hypersonic flows and hence any blunting, which produces a locally much stronger
shock wave than is present further downstream, engenders a layer of gas close to the
body in which the scalings for the velocity, density and temperature are different
from (7’) ; these variables could only change by order unity across the layer if the free
stream was merely supersonic. The structure of this ‘entropy layer’ has been
described in Yakura (1962) and Rusanov (1976), and we will not discuss it further
here except to note that the precise form of the blunting not only crucially affects the
behaviour of the entropy layer, but it can alter the entire flow pattern, including the
shock position, in the case when the blunting radius is of O(8). This fact led to the
proposal (Chernyi 1960) that blunted thin or slender bodies could be modelled by
adding an empirically-determined localized drag force to the momentum equations;
in the unsteady analogy, this drag corresponds to a local energy release at the start
of the piston motion. We will return to this interesting idea again when we
re-examine the piston problem, (1), (2) in the hypersonic limit.

It is interesting to note that the hypersonic small disturbance analogies carry over
to some of the chemically reacting flows mentioned in the introduction. If the
reaction is modelled by the localized shock condition (5), the analogy will still apply
as long as & scales with p/p although the Rankine-Hugoniot conditions will now be
much more complicated in general. In Barenblatt (1979), it was noted that in the
case when the energy loss ¥ is simply £, p/p, the energy condition in the hypersonic
limit reduces to that in the nonreacting case except that in the Rankine-Hugoniot
conditions 7y is replaced by I" where

Lj(r=1) =y/(y=1)—£,, (9)
thus vy is effectively reduced in value when E, is positive and tends to unity as the
energy loss increases. Roughly similar remarks apply to the case of distributed
reactions say, with e having the form (6). Since e, 7" and 7} all scale with p/p, the
hypersonic small disturbance form of the energy equation is

(0/0a* +v*0/0y*) (cy T™* +¢; T'F) + p*(0/0a* +v*0/y*) (1/p*) = 0
where the temperature changes are scaled with U2§2. Moreover the rate equation (6”)
b
eoomes 7(0/a* +v* /dy*) T* = T*—TF,

and again 7' = 0 immediately behind the shock. Other more complicated rate
equations may also admit the hypersonic small disturbance analogy as long as they
scale appropriately. Indeed, setting aside the difficulties associated with the entropy
layer, the prevalence of the analogy indicates that we need as clear an understanding
as possible of unsteady piston motion in the hypersonic limit.

Piston motions and similarity solutions

The non-reacting one-dimensional hypersonic piston problem is, in lagrangian
variables, (1”) with

p=1ly+1)/(y=11py p=2py%/(y+1), x=uxyt) 9)
at g = Poxs(t)’

where for the moment, we restrict attention to the simplest case p, = const. It is
fortunate that in the case of a ‘power-law’ piston motion

x,=ct* at £=0, c¢=const.,

Phil. Trans. R. Soc. Lond. A (1991)
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The theory of inviscid hypersonic flow 127

these simplified shock conditions admit a group symmetry of the field equations (1)
and boundary conditions (2'). Indeed, writing

@ =X(), p=p VP, p=pyR(n),
where 5 = £/p,t*, we can seek a solution in which

2y = bt*, b = const.

and 72X+ (@' —1) (X —X)+a 2P =0, (10a)
RX' =1, (10b)
(PR p?l*2) = 0, (10¢)

where * = d/dy. The shock and piston boundary conditions are
X(b) =b, P(b)=2b°/(y+1), R(b)=(y+1)/(y—1) (10a’)
and X(0)=c (100")

respectively. We can easily rewrite the system (10) as a single second-order equation
for X which has a further scale invariance so that it can be written as a first-order
equation for dW/dV where

s=lny, V(s)=ePX(y), Wi)=dV/ds and p=1-2/{a(y+1)}.

The details are given in Louie (1991) but the principal feature of the resulting phase-
plane analysis is that for values of « near 2, the piston path, namely the origin, is only
accessible from the shock on a trajectory on which V is positive if « > 2 (this
restriction on « is usually obtained from a phase-plane analysis in eulerian variables,
for example Grigorian (1958) and Lees & Kubota (1957)). Thus it seems that the
group symmetries can only be exploited for these values of a.

The physical significance of this critical value of @ becomes apparent. when we
consider the energy supplied to the gas by the piston over the time interval (0, 7).
Either by calculating

J‘T 24 (T) »
p(0,8)&,dt or f ( +lu2> dég,
0 P 0 (y—=p *®

we find this is proportional to 7**2 and hence only finite for & > £. The case in which
a, oc 8 is the famous ‘blast-wave’ solution of Taylor (1950) and Sedov (1959), which
models an instantaneous finite energy release, with no associated piston motion. The
implications of the restriction a > 2 for steady two-dimensional flow have been
discussed frequently. For flow past thin power-law bodies with exponent < £, it has
been suggested (Cheng & Pallone 1956 ; Freeman ef al. 1964 ; Hornung 1967) that the
shock is still analogous to a blast wave, i.e. eventually has a shape Y, oc a8, but with
a coefficient determined empirically by the drag exerted on the nose.

The assumption of a strong enough shock that the terms in M2 in (8) may be
neglected permit many other similarity solutions to be considered, say for gas
expanding into a vacuum (Grundy & McLaughlin 1977), implosions (Stanyukovich
1960) and, of more relevance to us, shocks propagating into inhomogeneous
atmospheres in which p, is proportional to some power a’ of the distance from the
initial shock position (Raizer 1964). This latter case has some relevance to the
discussion above because if &’ is negative, so that the density at the origin is infinite,
then similarity solutions can be found if & > 2/(3+a).

Phil. Trans. R. Soc. Lond. A (1991)
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128 K. Lowie and J. R. Ockendon

Because rate equations introduce new timescales into the model, it is difficult to
find explicit solutions to reacting piston flows. However, similarity solutions with
curious properties have been found for the special model introduced in Logan &
Woerner (1989). One notable result in an extreme case is that of Barenblatt (1979).
By introducing a strong energy loss at the shock, so that I"— 1 in (9), the difficulty
associated with a <2 can be formally removed and a similarity solution written
down for all a > 0.

The breakdown of the similarity solution (10) at the ‘blast wave’ value of a = 2
poses several interesting mathematical questions and in particular whether any
solution at all exists for « < £ and whether any piston motion exists which produces
a shock wave in which xg oc ¢/, # < 2. (Professor W. Chester has remarked that this
kind of shock motion may be possible if an initial energy release is followed by a
piston withdrawal. This would be in accord with the phase-plane discussion following
(10).) Similar breakdowns in other kinds of similarity solutions for one-dimensional
hypersonic flow have been listed in Barenblatt (1979), which also suggests remedies
in the form of various kinds of regularization of the initial data, but which still permit
the solution to tend to a similarity solution for large times. This philosophy of
regularization of similarity solutions has a long history in applied mechanics (see, for
example, Moffatt & Duffy 1980) and will play an important role in our subsequent
discussion of piston motion. Before pursuing this, we introduce one other
approximation into our model (1’) which will not only enable us to make conjectures
about similarity solutions to the piston problem, both with and without chemical
reactions, but will also shed light on some blunt body flows.

Newtonian theory

1f we make the physically questionable assumption that 0 < (y—1)/(y+1) =¢ < 1
and attempt an expansion of the solution of the hypersonic models (17), (2’) in powers
of €, the large constant density ratio across the shock immediately suggests that the
flow behind this shock is confined to a thin ‘shock layer’. In such a situation the
formal lowest order solution is

ry = 1), (1la)
=, (11b)
p = —&i, + i, + a3, (11¢)
p=p/G(E), (11d)
where Gz, (1) = ap(t). (11e)

A surprisingly similar result holds in the case of two-dimensional steady flow past
an arbitrary (not necessarily thin) body, as long as body fitted coordinates are used
as described in (A 1)—(A 4). (The relation between this configuration and that
proposed by Newton (1729) is described in detail in Hayes & Probstein (1966) and
Chernyi (1961).) In these coordinates, the result is

X, =X, (), (12a)
y =0, ’ (125)
p=sintgla ) | cosp Ny, (120)

Xp(2)
p = p/sin® g(X5A). | (124)
u = cos p(Xp (), (12e)

Phil. Trans. R. Soc. Lond. A (1991)
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The theory of inviscid hypersonic flow 129

where X, (z) is the body thickness, the body has slope ¢ and curvature , and X;'()
is the x coordinate of the intersection of the streamline through (x, i) with the lowest
order shock position. In fact, the approximation can be applied to general three-
dimensional flows in which particles within the shock layer travel along geodesics
this introduces the interesting new possibility that particles entering the shock layer
at two distinet points can both arrive at the same point on a suitably concave body
at the same time. Such ‘shock line’ formation is discussed in Hayes & Probstein
(1966).

The principal limitation on the applicability of (11) and (12) is apparent when we
attempt to compute the shock layer thickness to lowest order. From (11) this gives

v = ¢ prm G(£)dg (13)

0 {xp "'ﬁp + xlz) - g.%'p}

and, from (12),

X p(2)

X, —X, = ef

0

i
sin2¢(X;l(,/,f))d¢//{sinz¢(x)+K(x)f cos¢<Xgl<¢>>d¢}
Xp(2)
(13)

as long as the integrals on the right-hand side exist. This can fail to be the case when
the piston path (or the body) is either sufficiently abrupt at ¢ = 0 (x = 0) that G (or
sin®¢@) has a non-integrable singularity there or when z,#,+ 4%, or

X

sin%(x)—x(x)J " cos X5 (y) Ay,

0

vanishes at some instant (position). When x,, oc #* (or X, oc #%), the former situation
corresponds to a < 3 (a < }), which is especially interesting in view of the discussion
above. In either case the lowest order density vanishes so rapidly as the piston (body)
is approached that the boundary condition there can seemingly only be satisfied if
the shock is much further away than O(e).

This eventuality immediately suggests that shock layers in our fictitious newtonian
gas can ‘fly off” or separate from the piston or body responsible for their existence.
In the case of steady flow, the local details of such separations have been discussed
in Freeman (1960) and Ockendon (1966, part II is in error) but the important new
global feature is the possibility (Lighthill 1957; Hayes & Probstein 1966) that,
downstream of the separation point, the shock layer becomes a ‘free layer’ separated
from the piston or body by a relatively large region of low pressure, low density gas.
The possibility of such a configuration can be envisaged by considering the
Prandtl-Meyer expansion of a gas whose Mach number is O(¢ %), as is the case in a
newtonian shock layer. Then it can be seen that if the flow is past a corner of angle
much larger than O(1/¢), almost all the gas is contained in a wedge of angle O(y/¢),
as in figure 1, with the pressure and density of the gas downstream of this wedge
being O(e™"/v¢). A similar result applies to the one-dimensional flow which occurs
when a piston moving into a gas at constant velocity suddenly has its velocity
reduced to a new constant value. It is interesting to note that in both these cases, no
matter how large the corner angle nor how large the piston velocity ratio, the
resulting expansion is never enough to produce a vacuum in the newtonian limit ; the
gas can merely expand to exponentially small pressures and densities.
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initial Mach
line

freestream

M=0(")

Figure 1. Prandtl-Meyer expansion of a newtonian shock layer.

The lowest order shape of a free layer is given by equating (11¢) or (12¢) to zero
at its base, which is effectively where & or i is zero; this gives

1 o1
xs =att or X =a'w,

for some constants a,a” whose determination will be considered later.

The more detailed structure of free layers, their regions of validity, and their
relation to blast waves will be discussed in the final section but, in view of the
simplicity of the lowest order solutions (11), (12), we first consider the effect on these
solutions of some of the chemical reactions listed in §1.

Chemically reacting newtonian flows

Models for reacting hypersonic flows are generally so complicated as to necessitate
either a numerical treatment (Capiaux & Washington 1963 ; Sedney et al. 1964 ; Hall
et al. 1962; many more recent references can be found in Anderson 1989) or a
linearization in a situation where disturbances are uniformly small (Clarke 1960;
Moore & Gibson 1960). However, the newtonian non-reacting solution (11) is so
simple that it permits the incorporation of models such as (6,6") for vibrational
relaxation. We now define a small positive number ¢ such that y, = 1+2¢,
v = 142¢’(1+A); A is positive since ¢, and ¢; are both positive and y,, the specific
heat ratio for a gas in which 7' = 7T}, corresponds to a specific heat ¢, +¢; > c,. Thus,
when we eliminate 7} between the energy equation (1¢’) and the rate equation (6'),

btai
e obtm @/ +v0/0) p/p =0, v=(1+N)/r (14)
to lowest order, with the extra shock condition
A/0t(p/p)+Ava2 =0 on x = a4 t). (14"

The lowest order solution is now
s=xp, x=x, p/p=GE+HE)e™,
G(xy) = 23, H(xy) = Adde”.
When we write p = (1 —¢’(A+ 1)) @2 instead of (96") and proceed to the second order

terms in ¢ in this newtonian expansion, we find the interesting result that the
pressure on a piston moving with constant velocity c is

p=cYl+¢[1+{1—vt}Ae ] (15)
Phil. Trans. R. Soc. Lond. A (1991)
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1.2 \’—”_’—‘

/(Nm™)

0.6

piston’

P

0 30 60
t/(107%s)

Figure 2. Pressure on constant velocity piston in vibrationally relaxing gas, showing non-
monotonic approach to equilibrium value. Data: p,=1kgm™, c=1ms™, 7=10%s A =1,
e=0.1.(y,=12,y,=14)

and therefore decreases from its initially frozen value through a minimum before
finally increasing to its equilibrium value as t—oo0. For typical values of the
parameters in (15) this non-monotonic region is very small (see figure 2). By invoking
the hypersonic small disturbance analogy, this non-monotonicity may be compared
with that obtained numerically by Sedney & Gerber (1963) and Lee (1965) in the case
of flow past a slender wedge. For more complicated rate equations, this non-
monotonic behaviour appears to be absent (see Capiaux & Washington 1963 ; Stalker
1989).

Modifications to (3¢) analogous to (14) have also been obtained for blunt body
flows, and also in the presence of more complicated reactions, in Freeman (1958) and
Hornung (1972).

We note with disappointment that dissipative processes such as (6,6’) have not
alleviated the singularity when z, = ct*,« < 2. The integrand in the formula (13) for
the shock layer thickness is smaller when relaxation is present, but it is still
nonintegrable at £ = 0. Hence these reactions are incapable of resolving the
singularity. A similar remark applies to the smoothing effect of incorporating a finite
Mach number in the shock condition, the principal consequence of which is to
change the shock conditions for the density from p =¢ to p = e(1+4/42), where
0 = 2yp,/(y+1)p, and, since |&y| - co as t >0, there is no singular behaviour as § 0.
We recall that even the presence of an ambient gas with a power-law density
distribution p, oc #* only changes the shock conditions to p oc 2% on £ oc 2*1, This
means that when z, oc 1, G(§) ~ £&2/0/0+2) 35 £ 5 ( and the similarity solution ceases
to exist when a < 2/(3+a’). The critical value of a is thus merely reduced when
o’ > 0. The only mechanism we have yet uncovered which removes the criticality
altogether is that of infinite energy loss at the shock as in Barenblatt (1979).

It is with these thoughts in mind that a scenario for such piston flows with

a < 2 is proposed in the next section.
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Separated newtonian flows

The preceding sections have revealed the need for a clearer understanding of the
most interesting phenomenon uncovered by the newtonian approximation, namely
that of shock-layer separation. We will confine our remarks here to unsteady one-
dimensional motion, but some of the ideas will be applicable to steady flow in more
dimensions.

We expect both on physical grounds and from the equality of the critical values
of a in (10) and (11) that, in the limit as y -1, the non-existence of similarity
solutions to power-law piston problems is related to the separation of newtonian
shock layers. What we will suggest in this section is that newtonian power-law piston
problems with o < § are only well-posed when some regularization or smoothing of
the piston motion is imposed near { =0 and that this regularization determines
certain parameters describing the subsequent flow without affecting its gross
features. This kind of description is in line with our earlier references (Chernyi 1960;
Barenblatt 1979; Moffatt & Duffy 1980).

Our argument is based on the naive lowest-order approximation to (11), namely

@2/ +2p/0E =0, plp = G(E), w/ok=c/p, (16)
where G(z,) = #2. These equations give
(0 /08)? 0% /21* = {G/(€) P /OE — G (£) 0w /) (17)

together with the shock conditions
x=1uyt),0x/05 =€ on §&=uxy?). (177

The neglect of the higher-order terms in the asymptotic expansion in e will be

justifiable a posteriori. We note that the exact version of (16) was written down and

solved in several special cases in Keller (1956), but here we discuss the question of the

well-posedness of (16) for small ¢ when the piston boundary condition
rx=uw,(t)=ct* on £=0

is also imposed.

The behaviour of the similarity solutions to (17), (17’) is even easier to understand
than that of (10). In neither case can the ordinary differential equation for X(3) have
bounded solutions as 7 -0 when a < . Not surprisingly, the retention of higher order
terms in ¢ in (16) will not retrieve the situation nor, as mentioned earlier, will either
the retention of finite Mach number effects or the introduction of a power-law
ambient density.

We have remarked earlier that (Hayes & Probstein 1966; Lighthill 1957) have
suggested that in two- or three-dimensional steady flow, newtonian shock layers will
separate from bodies and form free layers at points where the lowest-order newtonian
pressure (12¢) vanishes. We now consider applying this idea for sufficiently small
times, 1nclud1ng t = 0, for piston paths with o < 2. This would suggest that, from
(11c), z, ~ att, at least for 2 > a > 1, because we must satisfy x, > x,, for small enough
t; however this leaves open the problem of determining the coefﬁment a. We thus
seek a matched ,asymptotic expansion model in which the solution of (17) is such
that @ ~ 2, = att (i.e. a ‘free layer’ solution) for £ = O(1 ) but z varies from x, to
x, for sufﬁmently small values of £. Now the right-hand side of (17), which repre-
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—ct®
o ¢ free layer
1
x, = at?
8 -

X —

Figure 3. Regularization of piston path, showing conventional shock layer for ¢ < 4.

sents the particle path curvature, is only comparable with the left-hand side when
£ = ¢ = O(1) and hence, for 2> a > 1, we would like to be able to solve

(Om/0E)* O*/01* = 3a*(§'* 0%x /0™ + 26" 0w /0F),
with x~att as £ >0 (18a)
and x=ct* on & =0. (18b)

However, it is simple to observe by balancing powers of §’ that, as in the case of the
similarity solution, this equation seems to have no solutions in which « is finite as
& -0 and nor would it if any of the remedies suggested in the previous paragraph
were attempted.

In view of all these remarks, we resort to a regularization of the piston motion
which introduces a conventional shock layer for ¢t < §. We write the piston path as
a continuously differentiable function of the form

. = {xpo(t), 0<t<?d,

P ct*, o <t, (19)

where 2, = O(t*), a, > § as t—>0 (see figure 3). Since z, ~ x,, for ¢ < ¢, this means
that the small £ behaviour is now changed so as to satisfy G(x,,,) = @}, for ¢ < &; hence
G(§) = O(£¥ %) as £ 0. It is now a simple matter to join a unique free layer solution
for ¢ > § smoothly to a shock layer solution for ¢ < 4. This involves solving #2 + 22 = 0
for t > & with x, and #, prescribed at t = 8 and gives x, = at? for some value of a
dependent on x,,. This value of @ will have to increase by an order of magnitude as
a3 s0 that 2, should continue to exceed x, as this limit is approached.

The precise details of the way in which the shock and free layers match near ¢ = ¢
can be given in the case x,, oc {. Then G is approximately constant in the transition
region and (17) becomes an equation which is identical to one which was analysed in
Ockendon (1966) in connection with the separation of a steady two-dimensional
newtonian shock layer from a wedge at a point where it faired smoothly into a
cylinder. It can be shown that the shock position automatically becomes parabolic
at the end of the transition region. We will return to the relation between newtonian
piston motions and two-dimensional blunt body flows in the conclusion but
unfortunately this seems to be the only configuration in which the genesis of the free
layer can be analysed explicitly.
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X
D X X Xs

(@) (6)

{—
—w

X — X —»

Figure 4. (a) No free layer downstream of the regularization region. (b) Free layer is joined
smoothly to the shock layer at t = 4.

We can now give a scenario for flows produced by piston motions for arbitrary «.
We must initiate the motion with z, = x,, as in (19). When we compute the smoothly
joining layer x (t) for ¢ > &, then either (i) the subsequent piston motion, which may
be x,, oc %, & < 3, is greater than x, for { > &, in this case no separation occurs and the
newtonian shock layer continues to be an acceptable first approximation for ¢ > ¢
figure 4at or (ii) the subsequent piston motion is less than x,. Then there is a
downstream free layer described by (18a), but where the crucially important
behaviour of & for small § is determined by x,, (figure 4b).

Within this latter case, there are still two possibilities, even when we exclude
smooth motions in which a, > 1. Either o, < 1, in which case G(§) ~ £27%% as £->0
and @ is such that we can solve (17) for small ¢ by matched asymptotic expansions
involving algebraic powers of €, with £§e™*/20%) heing the relevant inner variable,
which is of order one in the region between x,, and x,. Within this separated region,
the pressure and density are algebraically small in e. This can be thought of as a
‘blunted’ piston motion which introduces an ‘entropy layer’ between the free layer
and the piston. Alternatively, when o, = 1 so that G ~ O(1) as {0, (17) effectively
becomes the linearizable equation mentioned earlier,

(O /0&)2 0%/ 0t% = ¢/4(0%x/0E?) (19)

as £—0. No algebraic scaling is now available to balance the two sides of this
equation for small £ but a heuristic estimate of the way in which x can vary from at?
for relatively large values of £ to z,, at £ = 0 can be obtained by writing  ~ att + €&
where, to lowest order,

0% /0% + at~%(0& /O£)% = 0.

The relevant solution of this ordinary differential equation is

& = (t:/a)In (£/ath),

which suggests that it is only when £ is exponentially small in € that |£ can become
large. Such exponentially small terms have already been foreshadowed by the
newtonian limit of the Prandtl-Meyer expansion referred to earlier, and can also be
compared with newtonian source and vortex flows (Ockendon 1965).

We conclude by mentioning that piston motions which start smoothly enough for
newtonian theory to be easily applicable at ¢ = 0, but which are subsequently slowed

1 If, in this case, the piston velocity was discontinuous at ¢ = 8, a localized force would be exerted on the
piston at ¢ = & as described in Hayes & Probstein (1966).
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The theory of inviscid hypersonic flow 135

abruptly, can be handled similarly because there is no need for ¢ to be a small
parameter in any of the above analysis.

3. Conclusion

We have presented as complete an account as we have been able of the principal
new phenomena encountered in the simplest theories of inviscid hypersonic flow. We
have concentrated on the case of one-dimensional piston motion for the sake of
mathematical convenience, but many of our results can, with minimal complication,
be applied to two-dimensional or axially symmetric flows past blunt obstacles.
However, in these cases we would have to examine the details of the flow near the
nose much more carefully because of the subsonic region near the stagnation point.
This can cause even more difficulties with the local divergence of the newtonian
approximation than was the case with our one-dimensional piston motions.
Nonetheless, if we only consider steady flow past a pointed body, we can set this
difficulty aside and the shock layer formulation of (A 1)—(A 4) can be rewritten as

~ Y\? 2 ~ Yy .~ Y

P (§5) (o1—eS5) = G ST -Gon T (20)
to lowest order, where ', G and k depend only on the geometry of the body. In the
vicinity of a separation point « = x,, we can relate (20) with (17) when we subtract
k(o) (x—xy)%/2¢ from Y and identify time with arc length along the body and £ with
Y. As described by the above equation, separation can now take two forms. First,
there is the case of ‘natural’ separation where « is so large at © = x, that the pressure
at the base of the shock layer (or on the piston for (17)) falls to zero there. In this case
we can re-scale x —x, with a suitable power of ¢ to retrieve an equation identical to
(20) but with « a constant and € = 1. Secondly, we can consider ‘artificial” separation
where « is discontinuous at x = ;. In this case the flow upstream of the separation
point can be considered to be that past a wedge so that k, ' and G are effectively
constants just upstream of « = z,. Now a rescaling of x—x, with ¢ retrieves (19).

The most striking phenomenon we have encountered has been the global
consequence of even small ‘bluntness’ effects in hypersonic flow. This fact was crucial
to the early development of theories for hypersonic flow past thin or slender bodies
and has formed the basis for our discussion of the piston problem for arbitrary power-
law motion. The principal theoretical idea is that the blunting can be modelled as a
localized drag, or energy release, and it is not surprising that energy dissipation
mechanisms play such an important role in understanding inviscid hypersonic flows.
What makes regularization with this kind of ‘blunting’ of mathematical interest is
the fact that for a wide class of z,,, piston motions with x, = ¢t*,3 > a > }, always
have the shock at a, = af* to lowest order; only the parameter a is to be determined
from x,,. This situation may be contrasted with more conventional ‘viscosity’
regularizations.

Finally, we note that although our scenario for newtonian piston motion relies
heavily on the concept of ‘free layers’ which separate from the piston under
appropriate conditions, we have said nothing about the uniform validity of these
layers for large times. Indeed, Freeman (1960) and Hornung (1969) have pointed out
that perturbations to free layer solutions in the form of asymptotic expansions in €
show that the layers ultimately thicken and, according to Freeman (1962) and
Hornung (1969) eventually evolve into blast waves.
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Figure 5.
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Appendix

When the gas flow is confined to a thin layer close to the body we choose a system
of ‘body-fitted’ curvilinear coordinates, as shown in figure 5; x and y measure
distances along and normal to the body respectively. '

The equations of motion are then

0/0x(pu)+0/dy(hpv) = 0, (A1)

uOu/0x + hv 0u /0y + kuv+ (1/p) Op/0x = 0, (A 2)

u v /0x+ hv dv /0y — ku®+ (h/p) Op/dy = 0, (A 3)

and u0/0x(p/p?)+hvd/Oy(p/p?) = 0, (A4)

where % and v are the velocity components in the x and y directions, «(z) is the body
curvature and A = 1+4«y.

Equation (A 1) shows the existence of a stream function ¢ such that 0yr/0y = pu
and 0y/0x = —hpv; Y is the steady flow counterpart of the ‘particle-path’ function
£. The above equations may be simplified by taking z and ¥ as independent
variables, when the equations become

udu/0x+kuv+1/p(0p/0x—hpvop /oY) = 0,
w/0x—ku+hop/O0y =0, wud/ox(p/p?)=0, Oy/Y =1/pu,
and dy/0x = hv/u,

which can be viewed as the lagrangian counterpart of equations (3) for steady two-
dimensional flow. The above procedure can also be carried out for axisymmetric flow
with almost identical results.

The boundary condition on the body is ¥ = 0 on ¥ = 0 and the shock conditions

become /5 (1) /iy — 1)+ 2/M?sin® (§ + )},
/Py = {2yM*?sin® (¢ +0)—(y—1)}/(y +1),
Y cosq’)—yi

. : 1 2
u 1Smasm(¢+3>[1—(m)]’

v . 2 . ! 2
7= —sm¢+y+1s1n(¢+3)0038[1_(m> }’
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The theory of inviscid hypersonic flow 137

on y = y,(x), where tand = y;(x) and ¢(x) is the body slope. In (12) we denote the
distances of the body and the shock from the axis by X, (x) and X(s) respectively,
where X, = X +y,cos ¢.
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